3.3.36 \(\int \frac {1}{(1+x^2)^2 \sqrt {1+x^2+x^4}} \, dx\) [236]

3.3.36.1 Optimal result
3.3.36.2 Mathematica [C] (verified)
3.3.36.3 Rubi [A] (verified)
3.3.36.4 Maple [C] (verified)
3.3.36.5 Fricas [A] (verification not implemented)
3.3.36.6 Sympy [F]
3.3.36.7 Maxima [F]
3.3.36.8 Giac [F]
3.3.36.9 Mupad [F(-1)]

3.3.36.1 Optimal result

Integrand size = 20, antiderivative size = 118 \[ \int \frac {1}{\left (1+x^2\right )^2 \sqrt {1+x^2+x^4}} \, dx=\frac {1}{2} \arctan \left (\frac {x}{\sqrt {1+x^2+x^4}}\right )+\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1+x^2\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{2 \sqrt {1+x^2+x^4}}-\frac {\left (1+x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1+x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{4 \sqrt {1+x^2+x^4}} \]

output
1/2*arctan(x/(x^4+x^2+1)^(1/2))+1/2*(x^2+1)*(cos(2*arctan(x))^2)^(1/2)/cos 
(2*arctan(x))*EllipticE(sin(2*arctan(x)),1/2)*((x^4+x^2+1)/(x^2+1)^2)^(1/2 
)/(x^4+x^2+1)^(1/2)-1/4*(x^2+1)*(cos(2*arctan(x))^2)^(1/2)/cos(2*arctan(x) 
)*EllipticF(sin(2*arctan(x)),1/2)*((x^4+x^2+1)/(x^2+1)^2)^(1/2)/(x^4+x^2+1 
)^(1/2)
 
3.3.36.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.28 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.92 \[ \int \frac {1}{\left (1+x^2\right )^2 \sqrt {1+x^2+x^4}} \, dx=\frac {\frac {x+x^3+x^5}{1+x^2}-(-1)^{2/3} \sqrt {1+\sqrt [3]{-1} x^2} \sqrt {1-(-1)^{2/3} x^2} \operatorname {EllipticF}\left (i \text {arcsinh}\left ((-1)^{5/6} x\right ),(-1)^{2/3}\right )+\sqrt [3]{-1} \sqrt {1+\sqrt [3]{-1} x^2} \sqrt {1-(-1)^{2/3} x^2} \left (-E\left (i \text {arcsinh}\left ((-1)^{5/6} x\right )|(-1)^{2/3}\right )+\operatorname {EllipticF}\left (i \text {arcsinh}\left ((-1)^{5/6} x\right ),(-1)^{2/3}\right )\right )+2 (-1)^{2/3} \sqrt {1+\sqrt [3]{-1} x^2} \sqrt {1-(-1)^{2/3} x^2} \operatorname {EllipticPi}\left (\sqrt [3]{-1},i \text {arcsinh}\left ((-1)^{5/6} x\right ),(-1)^{2/3}\right )}{2 \sqrt {1+x^2+x^4}} \]

input
Integrate[1/((1 + x^2)^2*Sqrt[1 + x^2 + x^4]),x]
 
output
((x + x^3 + x^5)/(1 + x^2) - (-1)^(2/3)*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt[1 - 
(-1)^(2/3)*x^2]*EllipticF[I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)] + (-1)^(1/3 
)*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt[1 - (-1)^(2/3)*x^2]*(-EllipticE[I*ArcSinh[ 
(-1)^(5/6)*x], (-1)^(2/3)] + EllipticF[I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3) 
]) + 2*(-1)^(2/3)*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt[1 - (-1)^(2/3)*x^2]*Ellipt 
icPi[(-1)^(1/3), I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)])/(2*Sqrt[1 + x^2 + x 
^4])
 
3.3.36.3 Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.43, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {1551, 25, 2230, 27, 1509, 1654, 1416, 2212, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (x^2+1\right )^2 \sqrt {x^4+x^2+1}} \, dx\)

\(\Big \downarrow \) 1551

\(\displaystyle \frac {x \sqrt {x^4+x^2+1}}{2 \left (x^2+1\right )}-\frac {1}{2} \int -\frac {-x^4-2 x^2+1}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \int \frac {-x^4-2 x^2+1}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx+\frac {\sqrt {x^4+x^2+1} x}{2 \left (x^2+1\right )}\)

\(\Big \downarrow \) 2230

\(\displaystyle \frac {1}{2} \left (\int \frac {1-x^2}{\sqrt {x^4+x^2+1}}dx+\int -\frac {2 x^2}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx\right )+\frac {\sqrt {x^4+x^2+1} x}{2 \left (x^2+1\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\int \frac {1-x^2}{\sqrt {x^4+x^2+1}}dx-2 \int \frac {x^2}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx\right )+\frac {\sqrt {x^4+x^2+1} x}{2 \left (x^2+1\right )}\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {1}{2} \left (-2 \int \frac {x^2}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{\sqrt {x^4+x^2+1}}-\frac {\sqrt {x^4+x^2+1} x}{x^2+1}\right )+\frac {\sqrt {x^4+x^2+1} x}{2 \left (x^2+1\right )}\)

\(\Big \downarrow \) 1654

\(\displaystyle \frac {1}{2} \left (-2 \left (\frac {1}{2} \int \frac {1}{\sqrt {x^4+x^2+1}}dx-\frac {1}{2} \int \frac {1-x^2}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx\right )+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{\sqrt {x^4+x^2+1}}-\frac {\sqrt {x^4+x^2+1} x}{x^2+1}\right )+\frac {\sqrt {x^4+x^2+1} x}{2 \left (x^2+1\right )}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {1}{2} \left (-2 \left (\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{4 \sqrt {x^4+x^2+1}}-\frac {1}{2} \int \frac {1-x^2}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx\right )+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{\sqrt {x^4+x^2+1}}-\frac {\sqrt {x^4+x^2+1} x}{x^2+1}\right )+\frac {\sqrt {x^4+x^2+1} x}{2 \left (x^2+1\right )}\)

\(\Big \downarrow \) 2212

\(\displaystyle \frac {1}{2} \left (-2 \left (\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{4 \sqrt {x^4+x^2+1}}-\frac {1}{2} \int \frac {1}{\frac {x^2}{x^4+x^2+1}+1}d\frac {x}{\sqrt {x^4+x^2+1}}\right )+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{\sqrt {x^4+x^2+1}}-\frac {\sqrt {x^4+x^2+1} x}{x^2+1}\right )+\frac {\sqrt {x^4+x^2+1} x}{2 \left (x^2+1\right )}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{2} \left (-2 \left (\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{4 \sqrt {x^4+x^2+1}}-\frac {1}{2} \arctan \left (\frac {x}{\sqrt {x^4+x^2+1}}\right )\right )+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{\sqrt {x^4+x^2+1}}-\frac {\sqrt {x^4+x^2+1} x}{x^2+1}\right )+\frac {\sqrt {x^4+x^2+1} x}{2 \left (x^2+1\right )}\)

input
Int[1/((1 + x^2)^2*Sqrt[1 + x^2 + x^4]),x]
 
output
(x*Sqrt[1 + x^2 + x^4])/(2*(1 + x^2)) + (-((x*Sqrt[1 + x^2 + x^4])/(1 + x^ 
2)) + ((1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 
1/4])/Sqrt[1 + x^2 + x^4] - 2*(-1/2*ArcTan[x/Sqrt[1 + x^2 + x^4]] + ((1 + 
x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/4])/(4*Sqr 
t[1 + x^2 + x^4])))/2
 

3.3.36.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1551
Int[((d_) + (e_.)*(x_)^2)^(q_)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_ 
Symbol] :> Simp[(-e^2)*x*(d + e*x^2)^(q + 1)*(Sqrt[a + b*x^2 + c*x^4]/(2*d* 
(q + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/(2*d*(q + 1)*(c*d^2 - b*d*e 
+ a*e^2))   Int[((d + e*x^2)^(q + 1)/Sqrt[a + b*x^2 + c*x^4])*Simp[a*e^2*(2 
*q + 3) + 2*d*(c*d - b*e)*(q + 1) - 2*e*(c*d*(q + 1) - b*e*(q + 2))*x^2 + c 
*e^2*(2*q + 5)*x^4, x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4* 
a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[q, -1]
 

rule 1654
Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]) 
, x_Symbol] :> Simp[1/(2*e)   Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Simp[ 
1/(2*e)   Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] /; 
FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a] && EqQ[c*d^2 
- a*e^2, 0]
 

rule 2212
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + 
 (c_.)*(x_)^4]), x_Symbol] :> Simp[A   Subst[Int[1/(d - (b*d - 2*a*e)*x^2), 
 x], x, x/Sqrt[a + b*x^2 + c*x^4]], x] /; FreeQ[{a, b, c, d, e, A, B}, x] & 
& EqQ[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]
 

rule 2230
Int[(P4x_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{A = Coeff[P4x, x, 0], B = Coeff[P4x, x, 2], C = Coeff[ 
P4x, x, 4]}, Simp[-C/e^2   Int[(d - e*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] 
+ Simp[1/e^2   Int[(C*d^2 + A*e^2 + B*e^2*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 
+ c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[P4x, x^2, 2] && Eq 
Q[c*d^2 - a*e^2, 0]
 
3.3.36.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.60 (sec) , antiderivative size = 328, normalized size of antiderivative = 2.78

method result size
risch \(\frac {x \sqrt {x^{4}+x^{2}+1}}{2 x^{2}+2}-\frac {\sqrt {1-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x^{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{\sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}}+\frac {2 \sqrt {1-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )-E\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )\right )}{\sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}+\frac {\sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, \Pi \left (\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, x , -\frac {1}{-\frac {1}{2}+\frac {i \sqrt {3}}{2}}, \frac {\sqrt {-\frac {1}{2}-\frac {i \sqrt {3}}{2}}}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, \sqrt {x^{4}+x^{2}+1}}\) \(328\)
default \(\frac {x \sqrt {x^{4}+x^{2}+1}}{2 x^{2}+2}-\frac {\sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{\sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}}+\frac {2 \sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{\sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}-\frac {2 \sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, E\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{\sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}+\frac {\sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, \Pi \left (\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, x , -\frac {1}{-\frac {1}{2}+\frac {i \sqrt {3}}{2}}, \frac {\sqrt {-\frac {1}{2}-\frac {i \sqrt {3}}{2}}}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, \sqrt {x^{4}+x^{2}+1}}\) \(397\)
elliptic \(\frac {x \sqrt {x^{4}+x^{2}+1}}{2 x^{2}+2}-\frac {\sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{\sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}}+\frac {2 \sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{\sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}-\frac {2 \sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, E\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{\sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}+\frac {\sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, \Pi \left (\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, x , -\frac {1}{-\frac {1}{2}+\frac {i \sqrt {3}}{2}}, \frac {\sqrt {-\frac {1}{2}-\frac {i \sqrt {3}}{2}}}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, \sqrt {x^{4}+x^{2}+1}}\) \(397\)

input
int(1/(x^2+1)^2/(x^4+x^2+1)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2*x*(x^4+x^2+1)^(1/2)/(x^2+1)-1/(-2+2*I*3^(1/2))^(1/2)*(1-(-1/2+1/2*I*3^ 
(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3^(1/2))*x^2)^(1/2)/(x^4+x^2+1)^(1/2)*Ell 
ipticF(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))+2/(-2+2*I* 
3^(1/2))^(1/2)*(1-(-1/2+1/2*I*3^(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3^(1/2))* 
x^2)^(1/2)/(x^4+x^2+1)^(1/2)/(1+I*3^(1/2))*(EllipticF(1/2*x*(-2+2*I*3^(1/2 
))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))-EllipticE(1/2*x*(-2+2*I*3^(1/2))^(1/2 
),1/2*(-2+2*I*3^(1/2))^(1/2)))+1/(-1/2+1/2*I*3^(1/2))^(1/2)*(1+1/2*x^2-1/2 
*I*x^2*3^(1/2))^(1/2)*(1+1/2*x^2+1/2*I*x^2*3^(1/2))^(1/2)/(x^4+x^2+1)^(1/2 
)*EllipticPi((-1/2+1/2*I*3^(1/2))^(1/2)*x,-1/(-1/2+1/2*I*3^(1/2)),(-1/2-1/ 
2*I*3^(1/2))^(1/2)/(-1/2+1/2*I*3^(1/2))^(1/2))
 
3.3.36.5 Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.19 \[ \int \frac {1}{\left (1+x^2\right )^2 \sqrt {1+x^2+x^4}} \, dx=-\frac {\sqrt {2} {\left (x^{2} - \sqrt {-3} {\left (x^{2} + 1\right )} + 1\right )} \sqrt {\sqrt {-3} - 1} E(\arcsin \left (\frac {1}{2} \, \sqrt {2} x \sqrt {\sqrt {-3} - 1}\right )\,|\,\frac {1}{2} \, \sqrt {-3} - \frac {1}{2}) - \sqrt {2} {\left (x^{2} - \sqrt {-3} {\left (x^{2} + 1\right )} + 1\right )} \sqrt {\sqrt {-3} - 1} F(\arcsin \left (\frac {1}{2} \, \sqrt {2} x \sqrt {\sqrt {-3} - 1}\right )\,|\,\frac {1}{2} \, \sqrt {-3} - \frac {1}{2}) - 4 \, {\left (x^{2} + 1\right )} \arctan \left (\frac {x}{\sqrt {x^{4} + x^{2} + 1}}\right ) - 4 \, \sqrt {x^{4} + x^{2} + 1} x}{8 \, {\left (x^{2} + 1\right )}} \]

input
integrate(1/(x^2+1)^2/(x^4+x^2+1)^(1/2),x, algorithm="fricas")
 
output
-1/8*(sqrt(2)*(x^2 - sqrt(-3)*(x^2 + 1) + 1)*sqrt(sqrt(-3) - 1)*elliptic_e 
(arcsin(1/2*sqrt(2)*x*sqrt(sqrt(-3) - 1)), 1/2*sqrt(-3) - 1/2) - sqrt(2)*( 
x^2 - sqrt(-3)*(x^2 + 1) + 1)*sqrt(sqrt(-3) - 1)*elliptic_f(arcsin(1/2*sqr 
t(2)*x*sqrt(sqrt(-3) - 1)), 1/2*sqrt(-3) - 1/2) - 4*(x^2 + 1)*arctan(x/sqr 
t(x^4 + x^2 + 1)) - 4*sqrt(x^4 + x^2 + 1)*x)/(x^2 + 1)
 
3.3.36.6 Sympy [F]

\[ \int \frac {1}{\left (1+x^2\right )^2 \sqrt {1+x^2+x^4}} \, dx=\int \frac {1}{\sqrt {\left (x^{2} - x + 1\right ) \left (x^{2} + x + 1\right )} \left (x^{2} + 1\right )^{2}}\, dx \]

input
integrate(1/(x**2+1)**2/(x**4+x**2+1)**(1/2),x)
 
output
Integral(1/(sqrt((x**2 - x + 1)*(x**2 + x + 1))*(x**2 + 1)**2), x)
 
3.3.36.7 Maxima [F]

\[ \int \frac {1}{\left (1+x^2\right )^2 \sqrt {1+x^2+x^4}} \, dx=\int { \frac {1}{\sqrt {x^{4} + x^{2} + 1} {\left (x^{2} + 1\right )}^{2}} \,d x } \]

input
integrate(1/(x^2+1)^2/(x^4+x^2+1)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(x^4 + x^2 + 1)*(x^2 + 1)^2), x)
 
3.3.36.8 Giac [F]

\[ \int \frac {1}{\left (1+x^2\right )^2 \sqrt {1+x^2+x^4}} \, dx=\int { \frac {1}{\sqrt {x^{4} + x^{2} + 1} {\left (x^{2} + 1\right )}^{2}} \,d x } \]

input
integrate(1/(x^2+1)^2/(x^4+x^2+1)^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(x^4 + x^2 + 1)*(x^2 + 1)^2), x)
 
3.3.36.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (1+x^2\right )^2 \sqrt {1+x^2+x^4}} \, dx=\int \frac {1}{{\left (x^2+1\right )}^2\,\sqrt {x^4+x^2+1}} \,d x \]

input
int(1/((x^2 + 1)^2*(x^2 + x^4 + 1)^(1/2)),x)
 
output
int(1/((x^2 + 1)^2*(x^2 + x^4 + 1)^(1/2)), x)